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LOCALIZED COHERENT STRUCTURES IN THE BOUNDARY LAYER

UDC 532.517.4:533.9I. G. Dodonov, V. A. Zharov, and Yu. I. Khlopkov

A Blasius laminar boundary layer and a steady turbulent boundary layer on a flat plate in an
incompressible fluid are considered. The spectral characteristics of the Tollmien–Schlichting
(TS) and Squire waves are numerically determined in a wide range of Reynolds numbers.
Based on the spectral characteristics, relations determining the three-wave resonance of TS
waves are studied. It is shown that the three-wave resonance is responsible for the appearance
of a continuous low-frequency spectrum in the laminar region of the boundary layer. The
spectral characteristics allow one to obtain quantities that enter the equations of dynamics of
localized perturbations. By analogy with the laminar boundary layer, the three-wave resonance
of TS waves in a turbulent boundary layer is considered.

Introduction. Based on a large amount of experimental data, physical processes in laminar and
turbulent boundary layers were analyzed in [1–4]; special attention was paid to coherent structures, which
may be related to the linear and nonlinear dynamics of wave packets. To describe the wave packets, one has
to use the Navier–Stokes equations in the laminar boundary layer and the Reynolds equations and equations
for oscillations in the turbulent boundary layer. Following [5], these equations can be represented in the
form of a system of inhomogeneous Orr–Sommerfeld and Squire equations equivalent to the initial problem.
Methods of identification of the special features of these flows were proposed in [6–8] for obtaining simpler
equations. A number of assumptions were used: isotropy of the phase velocity, linearity of the phase velocity
in terms of the absolute value of the wave vector k, finiteness of the imaginary part of the frequency of TS
waves with the streamwise wavenumber tending to zero, and nonmonotonic dependence of the phase velocity
on k.

In the case of a laminar boundary layer, the equations reduce to a system of Schrödinger nonlinear
equations with respect to the envelopes of the wave packets ψ̃(n)

j related by harmonic and three-wave res-
onances, which are supplemented by a nonlinear integrodifferential equation with respect to the amplitude
ψ(0) of the wave packet concentrated near the origin of the space of wavenumbers [6]. In the case of zero
amplitude ψ̃(n)

j , the equation for ψ(0) retains its own significance and has the form

∂

∂t
ψ(0)(t, r1)− ε(X̄0 − a(X̄0))

∂

∂x1
ψ(0)(t, r1) = ε2I(0),

I(0) = −b(X̄0)
∫

1
|r1 − s|

∂

∂ξ

( ∂2

∂ξ2
+

∂2

∂η2

)
ψ(0)(t, s) ds

− ix1
∂a(X̄0)
∂X̄0

∂

∂x1
ψ(0)(t, r1) + (d(X̄0) +Q(0))ψ(0)(t, r1) +H0,0(ψ̃(0)(t, r1)),
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where r1 = r/ε, r = (x, z), r1 = (x1, z1), ε2 = (νω̃max/u
2
∞)1/2, ν is the kinematic viscosity, u∞ is the

free-stream velocity, ω̃max = max
k

Imag [ω(k)], and ω is the eigenfrequency of the unstable mode of the Orr–

Sommerfeld equation. The equation for ψ(0) contains the quantities a(X̄0), b(X̄0), and d(X̄0) determined
by the dispersion characteristic of the unstable mode of TS waves; Q(0) and H0,0 are expressed in terms of
the quadratures of combinations of the eigenfunctions of the solutions of the spectral problems for the Orr–
Sommerfeld and Squire equations [6] (they are considered below in more detail), and X̄0 is the coordinate of
the “center of mass” of the wave packet normalized to the length scale L = u∞/ω̃max. The finiteness of these
parameters would indicate the applicability of this model for the description of a set of phenomena, at least
weakly linear ones.

In the case of a turbulent boundary layer, we consider models based on the kinetic equation for
elementary waves in the three-wave resonance approximation. The coefficients of this equation are also
determined from the solution of the spectral problem.

Because of the complexity of determining these quantities, in particular, matrix elements Hk,k1
, sim-

plified equations were derived on the basis of the asymptotic analysis of the spectral problem for the Orr–
Sommerfeld equation for αRe→∞ (α is the streamwise wavenumber and Re is the Reynolds number).

Below we give the results of numerical calculation of the spectral characteristics for the Blasius profile
and for a self-similar turbulent profile [9, 10], which are necessary to justify the approaches of [6–8].

1. Formulation of the Problem. The authors of [6–8] considered some possibilities of the nonlinear
description of the flow in the laminar and turbulent regions of the boundary layer on a flat plate using flow-
field decomposition into a series in eigenfunctions of the Orr–Sommerfeld equation. In the general case, one
also has to consider the Squire equation, since the Navier–Stokes equations for the fields of velocity u, v, w

and pressure p may be represented in the form of a system of Orr–Sommerfeld and Squire equations relative
to the vertical components of velocity v and vorticity η with nonlinear right parts [5]. The linear parts of
the equations with the boundary conditions v̂ = dv̂/dy = η̂ = 0, y = 0, and y =∞ yield the known spectral
problems [5]. The quantities marked by the hat symbol are the Fourier transforms of the initial quantities:

f =

∞∫
−∞

dα

∞∫
−∞

dβ

∞∫
−∞

dωf̂(y) exp (iαx+ iβz − iωt), ω = αc.

Here k2 = α2 + β2, β is the spanwise wavenumber, k = (α, β) is the wave vector, and c is the phase velocity.
By solving the Orr–Sommerfeld equation, we obtain the eigenvalues (we call them modes) cn = cn(k2, αRe),
where n = 1, 2, 3, . . . is the number of the eigenvalue.

The right part of the Squire equation contains a term proportional to v̂; in the absence of this term,
we obtain an equation corresponding to the spectrum of eigenvalues (modes) [5]:

c′n = c′n(k2, αRe) = c′′n(αRe)− i k2

αRe
, n = 1, 2, 3, . . . .

We indicate some conditions of symmetry [5] imposed on the phase velocities c(k2, αRe) and c′′(αRe)
and eigenfunctions v̂(k,Re) and η̂(k,Re) by the Squire and Orr–Sommerfeld equations and the conditions of
reality of the initial physical quantities:

c(k2, αRe) = c(k2,−αRe)∗, c′′(αRe) = c′′(−αRe)∗, v̂(k) = v̂(−k)∗, η̂(k) = η̂(k)∗.

The asterisk here denotes complex conjugation. It is convenient to use these conditions for constructing
resonance characteristics.

We give the first modes of the Squire and Orr–Sommerfeld equations and also some characteristics
determined through them, which refer to resonant interactions of elementary waves, i.e., to the resonance of
the Squire and Orr–Sommerfeld modes,

cn(k2, αRe) = c′m(k2, αRe), m, n = 1, 2, 3, . . . , (1.1)
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and to the three-wave resonance of Orr–Sommerfeld modes

Real [ωl(k)] = Real [ωm(k1)] + Real [ωn(k2)] (l, m, n = 1, 2, 3, . . . ; k = k1 + k2),

where ωl(k) = αcl(k2, αRe).
Similar characteristics were found in many papers (see, for example, [5, 11, 12]); however, it is necessary

to find them again to perform special processing that would allow one to confirm or reject the assumptions
of [6–8] with a good degree of accuracy.

The numerical method of solving the spectral problems at this stage was as follows: a semi-infinite
domain [0;∞) was replaced by a finite domain [0; 10], and a grid (201× 351 points) was introduced in which
the initial equations were represented in the difference form (by integration from one half-node to another)
with the second order of accuracy.

For y > 10, the eigenfunction of the Squire equation was assumed to be equal to q exp (−λy), where
λ = −(iαRe (1− c))1/2, whence it follows the boundary condition [11] η̂′(10) + λη̂(10) = 0. Similarly, for the
Orr–Sommerfeld equation in this region we assume that

v̂ = q1 exp (−λ1y) + q2 exp (−λ2y), (1.2)

where λ1 = k and λ2 = (k2 + iαRe(1 − c))1/2. From relation (1.2) and its first three derivatives we obtain
the following boundary conditions [11]:

v̂′′ + (λ1 + λ2)v̂′ + λ1λ2v̂ = 0, v̂′′′ + (λ1 + λ2)v̂′′ + λ1λ2v̂
′ = 0. (1.3)

The problem with the boundary conditions (1.3) reduces to the solution of the ordinary spectral problem for
a doubled number of variables (see, for example, [11]).

However, if the value of |αRe(1− c)| is rather high, we may use the boundary condition η̂(10) = 0 for
the Squire equation and ignore the second term in the right part of formula (1.2) for the Orr–Sommerfeld
equation. Then we can obtain simplified boundary conditions

v̂′ + kv̂ = 0, v̂′′ + kv̂′ = 0,

which do not include the phase velocity c, which allows a twofold reduction of the dimension of the problem.
The eigenvalues of the spectral problem described above for a given velocity profile were found using

standard programs for solving the generalized spectral problem. The accuracy of results was evaluated by
comparison with the data of [12].

2. Laminar Boundary Layer. The Blasius profile was considered as the velocity profile of the main
flow.

The Squire equation. In this equation, spectrum of phase velocities c′n(k2, αRe) (n = 1, 2, 3, . . .), which
depends on α and β, can be reduced by a simple substitution to the spectrum c′′n(αRe) = c′n(k2, αRe) +
ik2/(αRe), which depends only on αRe. Thus, the problem is significantly simplified. The asymptotic
solution c′′(αRe) for the parameter αRe for αRe� 1 can be easily obtained:

c′′j (αRe) = −δλjp+O(δ2), p = U ′(0)/2 ≈ 44/265, δ = (ipαRe)−1/3,

Ai (λj) = 0, λ1 ≈ −2, 338 11 (j = 1, 2, . . .).

Here Ai (x) is the Airy function and j is the mode number. It should be noted that the Squire modes depend
monotonically on the mode number.

Using this asymptotic solution, we obtained the formula c′′n(αRe) = An/(αRe)1/3+Bn/(αRe)2/3, which
yields the calculation results for αRe/500 ∈ [0.001; 3] and ensures approximation for large values of αRe.

The calculation results were used to study the resonance of the Squire modes and unstable Orr–
Sommerfeld mode.

The Orr–Sommerfeld Equation. This equation was solved for the Blasius profile within the range of
Reynolds numbers from 500 to 3000 for α ∈ [0.005; 1.8] and β ∈ [0; 1.8].
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TABLE 1

Re a b ε2d

500 0.24610402 0.96970043 −0.00256494

1000 0.21921957 0.94623006 −0.00177655

1500 0.20552628 0.91792750 −0.00145604

2000 0.19858133 0.88027801 −0.00122656

3000 0.19144657 0.85439075 −0.00100397

Fig. 1

Zharov [6] proposed an approximation of the phase velocity near the origin:

c(k) = a(Re) + b(Re)k + iε2d(Re)/α,

where Re = Re(X̄0) is the Reynolds number based on the momentum thickness. The values of the coefficients
a, b, and d are listed in Table 1.

This approximation is valid within the range α ∈ [0.005; 0.14]. In addition, in the region α ∈ [0.005; 1.8]
and β ∈ [0; 1.8], the phase velocities were represented using the piecewise-polynomial interpolation with
respect to α and β. In this form, the data were used to study the resonances. Gol’dshtik and Shtern [11]
derived a dependence of the phase velocity in a wide range of α (up to α ≈ 103) for β = 0. The results of
the present work together with the asymptotic solution for k � 1 obtained in [7] are in good agreement with
the results of [11].

Figure 1 shows the dependence of the maximum growth rate of TS waves on the Reynolds number
(points are the calculation results). An increase in the growth rate with its subsequent stabilization is observed
in the interval Re = 500–3000. The region of instability in the coordinates α, β is pressed toward the origin
and extended along the β axis.

The dashed curves in Fig. 2 show the level of Real [c(α, β)] for Re = 500. We note that, near the origin,
they are close to circumferences whose centers are on the α axis. A similar behavior of the curves near the
origin is observed within the entire range of Reynolds numbers under study.

To describe the weakly nonlinear dynamics of the wave packet in a laminar boundary layer, Zharov [6]
proposed an approximation where the vertical components of the velocity of oscillations and vorticity were
decomposed into a series in terms of eigenfunctions of the Orr–Sommerfeld and Squire equations, respectively,
and only the first modes with the least decay were taken into account. It turned out that the coefficient at
the first eigenfunction of the Squire equation (it can be easily written explicitly) contains the difference c− c′
in the denominator. It is important in using this approximation that this difference does not vanish. The
resonance of the lowest Squire and TS waves was studied; the results are plotted in Fig. 3, which shows the
solutions of the equations Real [c− c′] = 0 and Imag [c− c′] = 0 for the unstable TS mode and the first Squire
mode. In the region of wavenumbers considered, there is no solution for the Squire modes of higher order. A
similar pattern is observed within the entire range of Reynolds numbers examined. Since the curves in Fig. 3
do not intersect, system (1.1) has no solution. Hence, the resonance considered is absent for α ∈ [0.005; 1.8]
and β ∈ [0; 1.8].
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Fig. 2 Fig. 3

The solid curves in Fig. 2 show the three-wave resonance of TS waves (curve 1) and the boundary of
the amplification region (curve 2) for Re = 500. The vector k corresponds to the maximum growth rate;
the vectors k̃1 and k1 are the subharmonics for the following cases, respectively: (1) asymptotic limit for
Re→∞ [7]; (2) asymptotic limit for Re = 500. In the first case, the slope of the harmonic with the frequency
ω(0.155; 0)/2 is 60◦; in the second case, it is approximately 50◦ (the end of the vector k1 lies on curve 1 of
three-wave resonances). A similar structure of the three-wave resonance is observed for other values of Re
within the region examined. We note that the slope of subharmonics for all Re is approximately 50◦.

The value of H0,0 was found as the limit Hk,k − k1
, where the vector k is directed along the longitudinal

axis of the space of wavenumbers, and k1 and k − k1 are its subharmonics for k → 0. It turned out that
Real [Hk,k − k1

] and Imag [Hk,k − k1
] are the power functions α0.72 and α0.45, respectively, as α → 0. By

renormalization of the initial equations, one can make the new quantity H0,0 finite and real, which regularizes
the model equations obtained in [6].

3. Turbulent Boundary Layer. In studying the turbulent boundary layer, we used the velocity
profile obtained in [10] by generalization of theoretical and empirical data:

u

u∗
= 5.424 arctan

(2y/δν − 8.15
16.7

)
+ log

( (y/δν + 10.6)9.6

(y/δν)2 − 8.15y/δν + 86

)
− 3.52

+ 2.44
[
Π
(

6
(y
δ

)2
− 4
(y
δ

)3 )
+
(y
δ

)2(
1− y

δ

)]
. (3.1)

Here u∗ = (τw/ρ)1/2 is the dynamic velocity, Π = 0.14, δν = ν/u∗, and δ is the boundary-layer thickness.
The relation between δν and δ is set by the formula δν/δ = (cf/2)−1/2 Re, where Re is the Reynolds number
based on the boundary-layer thickness δ, u(δ) = 0.99u∞, and the friction coefficient cf is determined from
the equation c

−1/2
f = 1.77 ln (Re cf/0.33) + 2.4 [9].

It follows from formula (3.1) that the turbulent velocity profile has two scales. We note that the second
derivative of profile (3.1) is nonmonotonic for y/δ → 1. Hence, the known approximations of the available
experimental data do not model all the properties of the velocity profile in the turbulent boundary layer.

Profile (3.1) was compared with the experimental data of [3]. Some difference was observed in the
region of action of the wall law, but the experimental profile and profile (3.1) coincided if the ratio of the
Reynolds numbers obtained in [3, 10] was roughly equal to 1.42.

Squire Equation. The spectral problem for the Squire equation was solved using the methods described
above. The modes were chosen taking into account the form of eigenfunctions. The solid curves in Figs. 4
and 5 show the real and imaginary parts of the phase velocity of the Squire modes for Re = 500 (the numbers
near the curves correspond to the mode number j). The real part of the phase velocity for different modes is
a system of nonintersecting curves; the curves corresponding to a greater mode number are higher than the
curves corresponding to a lower number. This is not true for the curves that describe the imaginary part.
The data obtained here are used for seeking possible rigorous resonances with TS waves.
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Fig. 4 Fig. 5

Fig. 6

Orr–Sommerfeld Equation. The phase velocities for TS wave modes were sought in the interval α ∈
[0.05; 40] and β ∈ [0; 30]. To illustrate the behavior of dispersion dependences in Figs. 4 and 5, the points
mark the curves that describe the behavior of the real and imaginary parts of the phase velocities of the two
lowest modes of TS waves c(α, 0) as a function of α for β = 0. As in the laminar case, there is no resonance
of the Squire and TS wave modes within the range of wavenumbers examined.

Figure 6 shows the three-wave resonance of the lowest TS wave mode (judging by the real part of the
phase velocity). The curves that characterize this resonance are significantly different from the three-wave
resonance on the Blasius profile.

4. Discussion of Results. It follows from the results obtained that there is no rigorous resonance of
the Squire and TS wave modes within the range of wavenumbers considered both in laminar and turbulent
boundary layers.

The data on dispersion dependences show that the assumptions accepted in [6] for deriving simplified
equations that describe the weakly nonlinear dynamics of wave packets are valid for TS waves of the lowest
mode of the Orr–Sommerfeld equations in a laminar boundary layer. These assumptions include the isotropy
of Real [c(α, β)] relative to the parameters α and β (see Fig. 2), the linear dependence on k in a certain small
neighborhood of zero, and the finiteness of Imag [ω] for k → 0 (see Table 1).

Some properties of the three-wave resonance are common for the spatial and temporal formulations of
the problem, which allows us to compare the results obtained in experiments with a vibrating strip. Thus,
the three-wave resonance curve (curve 2 in Fig. 2) explains the appearance of a continuous spectrum found
in the experimental study of this phenomenon in [1]; the reason is that the three-wave resonance with the
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wave vector k encompasses simultaneously all pairs of waves with the ends of wave vectors on curve 2, and
their sum is equal to the vector k. The frequency of waves that come into resonance changes continuously
from 0 to ω(k) (the dynamics of amplitudes should obey the integrodifferential equation). In addition, the
slope of the wave vector of the subharmonic to the longitudinal axis is estimated in [1] to be within the range
of 45–59◦ for the Reynolds number changing from the first critical value to a value corresponding to the
transition point. The value of 50◦ obtained on the Blasius profile in the present work is within this interval.

In a turbulent boundary layer (Re ≈ 40,000), unstable modes of TS waves were not found, in contrast
to [13]. In the examined range of wave vectors, the existence of a three-wave resonance was noted, whose
curves (see Fig. 6) may be interpreted as follows. If some inhomogeneity (k, k1), two-dimensional with respect
to x and z, appears in the flow, it may come into resonance (since it can be represented as a Fourier integral in
planar and oblique waves) with TS waves whose wave vector k2 is almost perpendicular to the flow direction.
Similar to Görtler waves, these waves form a spanwise structure observed at the bottom of the turbulent
boundary layer [3]. In this case, the structure may be related to the presence of an inhomogeneity, which is a
localized region of circulation flow near the wall. An analysis of the laminar part of the boundary layer shows
that these inhomogeneities may arise because of the nonlinear dynamics of localized perturbations [2, 4, 7, 14].

Thus, from the physical viewpoint, the presence of the three-wave resonance may explain the appear-
ance of a spanwise structure similar to Görtler vortices. (The possible relation of the three-wave resonance
with streamwise structures in a turbulent boundary layer was noted in [11], though the mechanism of forma-
tion of streamwise structures is not described in that paper.) The method of identification of this (unsteady)
structure in a turbulent boundary layer described in [7, 8] is similar to the method of identification of a coher-
ent structure in a laminar boundary layer considered in [6]. These structures are similar to those described
in [4] with the only difference being that the structures considered in the present work are unsteady.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 99-01-
01239) and the State Program for Supporting Leading Scientific Schools (Grant No. 96-15-96063).
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